
The Payment Card Industry requires all organizations that store or
process credit card data and transactions to implement technical security
requirements over all systems involved in data storage and transmission.
The scope of these control requirements ranges from encryption methods
to access rights management to vulnerability testing.

Rocket® API is designed with the robust security features you need
to implement many PCI-DSS requirements for processing Cardholder
Data (CHD) securely, from encryption to authentication to data masking.
However, the scope of PCI-DSS extends to a number of organizational
and procedural control areas that cannot be satisfied solely through
technical means. PCI-DSS compliance will ultimately depend on effective
implementation of the technical controls available through Rocket API as
well as appropriate technical and procedural controls over your entire CHD
environment. Relevant PCI-DSS requirements, and the capabilities Rocket
API offers to address them, are listed below.

Payment Card Industry Data
Security Standard (PCI-DSS)
Compliance with Rocket® API

COMPLIANCE

PCI-DSS Requirements Rocket API Capabilities

1.3
Prohibit direct public access between the Internet and any system
component in the cardholder data environment.

3.1
Keep cardholder data storage to a minimum by implementing
data retention and disposal policies, procedures and
processes that include at least the following for all cardholder
data (CHD) storage:

• Limiting data storage amount and retention time to that which
is required for legal, regulatory, and business requirements

• Processes for secure deletion of data when no longer needed

• Specific retention requirements for cardholder data

• A quarterly process for identifying and securely deleting stored
cardholder data that exceeds defined retention.

4.1
Use strong cryptography and security protocols to safeguard
sensitive cardholder data during transmission over open, public
networks, including the following:

• Only trusted keys and certificates are accepted.

• The protocol in use only supports secure versions or
configurations.

• The encryption strength is appropriate for the encryption
methodology in use.

Rocket API provides functionality for gateways between the back-
end mainframe and the internet, preventing direct access to the
CHD environment.

Rocket API does not by default store any data involved with API
calls, limiting the storage of such data.

Customers are able to cache common API calls for performance
reasons. This cached data is retained in memory only, not written
to any permanent storage mechanism, and is erased when the
Rocket API service is stopped, or at preconfigured time intervals.

Additionally, Rocket API supports data masking and
anonymization capabilities to limit the exposure of data in
a personally identifiable form

All data transfers using Rocket API are secured through encrypted
protocols, including TLS1.2 and SSHv2. Strong encryption
provides for data security and confidentiality.

2.3
Encrypt all non-console administrative access using strong
cryptography.

3.3
Mask PAN when displayed (the first six and last four digits are the
maximum number of digits to be displayed).

All data transfers using Rocket API are secured through encrypted
protocols, including TLS1.2 and SSHv2. Strong encryption
provides for data security and confidentiality.

Rocket API supports data masking and anonymization.

PCI-DSS Requirements Rocket API Capabilities

6.3
Develop internal and external software applications (including web-
based administrative access to applications) securely, as follows:

• In accordance with PCI DSS (for example, secure
authentication and logging)

• Based on industry standards and/or best practices.

• Incorporating information security throughout the software-
development life cycle

• Remove development, test and/or custom application
accounts, user IDs, and passwords before applications
become active or are released to customers.

• Review custom code prior to release to production or
customers in order to identify any potential coding vulnerability
(using either manual or automated processes)

• Code changes are reviewed by individuals other than the
originating code author, and by individuals knowledgeable
about code-review techniques and secure coding practices.

• Code reviews ensure code is developed according to secure
coding guidelines

• Appropriate corrections are implemented prior to release.

• Code-review results are reviewed and approved by
management prior to release.

Any changes to the coding of an API must be processed through
your source control system before being deployed through Rocket
API, and are thereby subject to all the development and change
controls that you have implemented in your SDLC environment.

6.4
Follow change control processes and procedures for all changes
to system components. The processes must include the following:

• Separate development/test environments from production
environments, and enforce the separation with access controls

• Separation of duties between development/test and
production environments

• Production data (live PANs) are not used for testing or
development

• Removal of test data and accounts before production systems
become active

• Change control procedures must include documentation of
impact and change approval by authorized parties

• Functionality testing to verify that the change does not
adversely impact the security of the system

• Back-out procedures

• Upon completion of a significant change, all relevant PCI
DSS requirements must be implemented on all new or
changed systems and networks, and documentation updated
as applicable

Any changes to the coding of an API must be processed through
your source control system before being deployed through Rocket
API, and are thereby subject to all the development and change
controls that you have implemented in your SDLC environment.

PCI-DSS Requirements Rocket API Capabilities

7.1
Limit access to system components and cardholder data to
only those individuals whose job requires such access.

Define access needs for each role, including system
components and data resources that each role needs to access
for their job function and level of privilege required (for example,
user, administrator, etc.) for accessing resources.

Restrict access to privileged user IDs to least privileges
necessary to perform job responsibilities. Assign access based
on individual personnel’s job classification and function.
Require documented approval by authorized parties specifying
required privileges.

7.2
Establish an access control system for systems components with
multiple users that restricts access based on a user’s need to
know, and is set to “deny all” unless specifically allowed.

RACH allows for granular assignment of permissions to support
the rule of least privilege, and does not allow access to functions
unless explicitly granted.

Access for execution of an API leverages access credentials from
the back-end mainframe operating system, and thereby inherits all
access rights and restrictions associated with those credentials,
including read and write capabilities for specific data elements.

Rocket API leverages access credentials from the back-end
mainframe operating system, and thereby inherits all access rights
and restrictions associated with those credentials, including read
and write capabilities.

In addition the access rights controlled through the back-end
mainframe, Rocket API provides application-layer security that
can further restrict API calls by user, by function, and by data
being accessed.

The Rocket Access and Connectivity Hub (RACH) management
interface, which manages the inventory of APIs and deployment
to API gateways, enforces granular user access controls that are
configurable by each customer.

RACH uses LDAP authentication to leverage the password controls
and other mechanisms that authenticate your users.

RACH audit logging records all user activity within the application—
including uploading and deployment of compiled APIs as well
as administration of the application itself—providing individual
accountability for all access and activity.

PCI-DSS Requirements Rocket API Capabilities

8.1
Define and implement policies and procedures to ensure proper
user identification management for non- consumer users and
administrators on all system components as follows:

• Assign all users a unique ID before allowing them to access
system components or cardholder data.

• Control addition, deletion, and modification of user IDs,
credentials, and other identifier objects.

• Immediately revoke access for any terminated users.

• Remove/disable inactive user accounts at least every 90 days.

• Manage IDs used by vendors to access, support, or maintain
system components via remote access

• Limit repeated access attempts by locking out the user ID
after not more than six attempts.

• Set the lockout duration to a minimum of 30 minutes or until
administrator enables the user ID.

• If a session has been idle for more than 15 minutes,
require the user to re-authenticate to re-activate the terminal
or session.

8.7
All access to any database containing cardholder data
(including access by applications, administrators, and all other
users) is restricted as follows:

• All user access to, user queries of, and user actions on
databases are through programmatic methods.

• Only database administrators have the ability to directly
access or query databases.

• Application IDs for database applications can only be used by
the applications (and not by individual users or other non-
application processes).

RACH uses LDAP authentication to leverage the password controls
and other mechanisms that authenticate your users. Account
management and authentication controls applied to your Identity
and Access Management (IAM) system will apply to Rocket API.

Rocket API provides the programmatic method for reading and
writing to databases with CHD. All such access is fully logged.

8.2
In addition to assigning a unique ID, ensure proper user-
authentication management for non-consumer users and
administrators on all system components by employing at least
one of the following methods to authenticate all users:

• Something you know, such as a password or passphrase

• Something you have, such as a token device or smart card

• Something you are, such as a biometric.

10.1
Implement audit trails to link all access to system components to
each individual user.

RACH uses LDAP authentication to leverage the password
controls and other mechanisms that authenticate your users. This
can include a password as well as other authentication factors
enforced by your IAM.

All logs for Rocket API, including the RACH management platform,
are tied to the individual user executing the command.

PCI-DSS Requirements Rocket API Capabilities

10.2
Implement automated audit trails for all system components
to reconstruct the following events:

• All individual accesses to cardholder data

• All actions taken by any individual with root or administrative
privileges

• Access to all audit trails

• Invalid logical access attempts

• Use of identification and authentication mechanisms —
including but not limited to creation of new accounts and
elevation of privileges—and all changes, additions, or
deletions to accounts with root or administrative privileges

• Initialization, stopping, or pausing of the audit logs

• Creation and deletion of system-level objects

Audit logging functionality can record all API calls, showing details of
the user accessing the function, data being accessed, and data values
being read and/or written.

RACH audit logging records all user activity within the application—
including uploading and deployment of compiled APIs as well
as administration of the application itself—providing individual
accountability for all access and activity.

10.3
Record at least the following audit trail entries for all system
components for each event:

• User identification

• Type of event

• Date and time

• Success or failure indication

• Origination of event

• Identity or name of affected data, system component,
or resource.

API logs include all relevant details of each recorded event.

© Rocket Software, Inc. or its affiliates 1990 – 2018. All rights reserved. Rocket and the Rocket

Software logos are registered trademarks of Rocket Software, Inc. Other product and service

names might be trademarks of Rocket Software or its affiliates. 2018-05 RS C API PCI DSS v2

rocketsoftware.com

info@rocketsoftware.com

US: 1 855 577 4323
EMEA: 0800 520 0439

APAC: 612 9412 5400

twitter.com/rocket

www.linkedin.com/company/rocket-software

www.facebook.com/RocketSoftwareInc

blog.rocketsoftware.com

